
             

NESP Marine and Coastal Hub Workshop 

Bass Strait Ecosystem and Offshore Renewable Energy  

Day 2: Species distribution and offshore wind impact pathways 
 

Date: Date: Thursday 10th April 2025 (11:00 – 15:00 AEDT)  

Meeting Purpose: This workshop aims to describe the status of species modelling and consideration 
of potential impact pathways that is being conducted through NESP Marine and Coastal Hub 
research to support the development of an offshore wind industry in the region. 

Location: CSIRO Auditorium and Virtual Attendance  

Outline of Day 2 

Timing Item Presenter 
11:00 – 11:10 Welcome and outline of day 2 Alan Jordan (UTAS) 

11:10 – 11:30  Integrated species distribution modelling Skipton Wolley 
(CSIRO) 

11:30 – 11:50 Population dynamics modelling: Leslie Matrix model 
for Southern Right Whales 

Maud El Hachem 
(CSIRO) 

11:50 – 12:10 Population dynamics modelling: Shy Albatross Robin Thomson 
(CSIRO) 

12:10 – 12:30 Population dynamics modelling: Priority shorebirds Marcel Klaasen (Deakin 
University) 

12:30 – 12:50 Population viability analysis: Orange Bellied Parrots Nick Beeton  
(CSIRO) 

12:50 – 13:30 Lunch Break 

13:30 – 13:50 Background and OWF development noise generation Christine Erbe  
(Curtin University) 

13:50 – 14:10 Noise Impacts and priority cetaceans Sophia Volkze  
(UTAS) 

14:10 – 14:30 Potential EMF effects Andrew Gill 
(AIMS) 

14:30-14:40 Workshop synthesis and next steps Keith Hayes 
(CSIRO) 

14:40 – 15:00 Q&A session  
15:00 Meeting close 

 

  



Integrated species
distribution modelling
Birds in space and time

Skipton Woolley | 10-04-2025
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Use of species distribution models
(SDMs) is one way to understand the
distribution of a species in space (and
time).

Predictions from SDMs can be used to
understand how at risk species respond
to human-induced disturbances or
environmental change.

Distribution of birds in space and time
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We might assume that there is a 'true' (latent)
distribution of a species that we observe with different
methods, data or knowledge.
Link different data types (e.g ad-hoc sightings and
quantitative surveys) data via a joint likelihood

In the hope to get greater spatial/temporal
coverage
Correct for observational biases contained within
data types (disentangle sighting process)

Survey data is typically at a population level, each
record represents the presence, presence/absence,
count or detection of individual(s) in a population (sub-
pop)
GPS data is at an individual level, each GPS ping is
essentially a record of single individual in space and
time Adapted from Isaac et al., 2020 - courtesy of Keith

Basic ISDM idea
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The idea is to integrate different data types to better
understand distribution, there are a number of ways to
do this, such as:

Data pooling
Ensemble independent models
Offset (say when effort is known)
Informative priors
Integrated models (joint likelihoods)

Recent developments in ISDMs literature tend to be
integrated models within a spatial point process
framework (e.g Fithian et al., 2015; Isaac et al, 2020)

Fletcher et al., 2019

Correct for biases in data types
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Here is an example from the Gould's Petrel

PO and eBird surveys typically contain sighting bias we
wish to correct for.
GPS data is independent of this, but typically biased to
tagging location.
Other data types are likely to contain different artefacts
we wish to handle.

GPS data is one of main sources of information, so let's try
and set-up an SDM approach that can meld these data in to
an ISDM framework

Different data types for Gould's Petral - courtesy of Myriam

Real world data
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Spatio-temporal point process
If we assume that a GPS tracks can be used to understand the spatial-temporal use of the environment, or habitat preference,
we can attempt to model the distribution of a species using a spatio-temporal Log-Gaussian Cox Process:

 will be the count of GPS pings/locations within a grid cell for an individual bird ( ), the grid cells will be bounded within
a spatial region .

Depending on the resolution of telemetry data some kind of interpolation or smoothing (HMM) could be done to massage the
GPS locations and frequency of data.

Y (i, s, t) ∣ λ(i, s, t) ∼ Poisson(λ(i, s, t))

Y (i, s, t) i

A
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Spatio-temporal point process
The log-intensity function is modelled as:

 is the intensity function for each individual bird in the population (sub-pop).
 represents the individual specific intercept.

 represents environmental/habitat observed covariates (fixed effects) in space and time.
 is a vector of regression coefficients associated with the environmental/habitat fixed effects.

 represents a spatial sighting process in space, e.g distance from tagged colony.
 represents a spatial sighting process in space, e.g distance from tagged colony.

 is a Gaussian Process (GP) with mean zero and covariance function , capturing spatial
and temporal dependencies (not captured by fixed effects).

In a Bayesian context, each of the parameters in the model would have a prior distribution, which would be important in the
context of the parameter model. For example, choices on hierarchical priors might inform partial-pooling of intercepts. I have
not reported them here for some sense of brevity.

logλ(i, s, t) = αi +X(s, t)⊤β+W(s)⊤δ+ Z(s, t)

λ(i, s, t)
αi
X(s, t)
β

W(s)
δ

Z(s, t) ∼ GP(0,C((s, t), (s′, t′))) C
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STPP with simulated data

Simulated individual bird GPS tracks for six discrete time steps 8 / 14



We can count the number of GPS locations per
individual per grid-cell to get an understand on habitat
utilisation/preference on an individual, the idea being
locations that have more GPS locations are places the
bird spends more time/uses.
Over multiple individuals we can start to infer
(sub-)population level preference/distribution of the
species and response to environmental conditions.
We can also control for biases in the data such as
distance from tagged colony.
The spatial-temporal random effect will help capture
the spatial-temporal movement of individuals that can
not be directly captured via covariates.
Potential to incorporate mechanistic process in the
model to understand disperal or home range dynamics
(e.g. Niven et al., 2025)

Count of GPS points per cell across region at each time step

Simulated sea surface temperature to use as a covariate in STPP

STPP with simulated data

9 / 14



Once we have fitted the model we can make
predictions on the likely intensity of individuals in a cell
and understand how there distribution might change at
different time of the year or if they follow certain
ecological processes (e.g wind, NPP or food availability)

We could also look at the predicted intensity of all
individuals, but summing over individual predictions.

We could look at the predicted intensity and the spatial
intersection with a proposed offshore wind
development, to start to understand the risk to
individuals or the (sub-)population. Predicted intensity of individual 1 from GPS data at each time step; blue

and green boxes represent potential off-shore wind development zones.

STPP with simulated data

10 / 14



We can summarise the intensity in the proposed
offshore wind development zones to understand the
relative intensity of an individual(s) in each region.

This might give insight into the frequency that birds use
certain areas.

Zonal summaries of bird intensities in each 'proposed' wind development
area.

STPP with simulated data
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To date I have just developed a spatial-temporal point
pattern for GPS data, but the same point pattern
framework can be used to handle different survey/data
types, such as:

Presence-only data (e.g ALA, OBIS, eBird)
Presence-absence (e.g eBird)
Counts (relative abundance) (e.g eBird)
Mark-recapture
Areal/distance surveys

Example of an integrated model using the RISDM package; Foster et al.,
2024

Integration with other models/data

12 / 14



Important considerations
Do we need an integrated framework?

At the very least we need an approach that can handle the diverse range of ways data is collected.
This might be via ensembling/combining independent models, data pooling or full model-based integration with joint
likelihoods.

Can we link individual/sub-population processes to overall population level?

Some folk have started to think about this problem explicitly with telemetry data and typical population level surveys
(Buderman et al., 2025).
But are these commensurate processes?

What data sources do we trust to best inform species distribution?

We typically ignore this, but we could put more weight on certain data types explicitly in this framework (via priors).
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Population Dynamics Modelling:
Leslie Matrix model for Southern Right
Whales
Maud El-Hachem, PhD
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Summary of the presentation

• Leslie matrix: numerical solutions and stability
• Estimating the parameters of the Leslie matrix from observations data
• Application: Interim Population Consequences of Disturbance

Image: Gregory ”Slobirdr” Smith - Southern Right Whale (Eubalaena australis)
en.wikipedia.org/wiki/Southern_right_whale#/media/File:Southern_Right_Whale_
(Eubalaena_australis)_(16358018502).jpg

en.wikipedia.org/wiki/Southern_right_whale#/media/File:Southern_Right_Whale_(Eubalaena_australis)_(16358018502).jpg
en.wikipedia.org/wiki/Southern_right_whale#/media/File:Southern_Right_Whale_(Eubalaena_australis)_(16358018502).jpg
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Leslie matrix model

• The matrix represents the transition of individuals between age
classes based on survival and fecundity rates.

• Leslie matrix helps predict age distribution and overall growth
rate.

• The matrix assumes a closed population without migration and
with unlimited resources.

• The matrix is used for female populations because it relies on
the birth rate.

• The Leslie matrix model helps assessing the impact of various
factors on survival and reproduction of the whales.
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Leslie matrix model

Rest i ng -
cal vi ng  

cycl e

CALF

Ag e 1

Ag e 2

Ag e 3

Ag e 4

Ag e 5 Ag e 6 . . . Ag e 14

Cooke J, Rowntree V, Payne R. (2001). Estimates of demographic parameters for southern right whales
(Eubalaena australis) observed off Penı́nsula Valdés, Argentina. Argentina. Journal of Cetacean
Research and Management (Special Issue). 2. 10.47536/jcrm.vi.297.

Peel D, Jones LL, Evans K (2024). Subcomponent 3: Expanding utilisation of southern right whale
datasets for estimation of national population parameters. Final Report.
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Directed graph of female reproductive cycle

Cal vi ng

Rest i ng

Mat ur i ng  
j uveni l es Recept i ve

• µ is the death rate

• α is the probability of a calving whale becoming receptive next year without
resting (standard cycle is three years)

• β is the probability of a whale taking an additional resting year

• γ is the probability that a receptive whale goes into resting without passing
by calving (γ = 0 means no abortion, no perinatal/postnatal death)
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Leslie Matrix

Calf 1Y 2Y 3Y 4Y Y5 . . . 14Y Calv. Rest. Rec. Dead
0 0.5S 0 0 0 0 . . . 0 0 0 0 (1− 0.5S) Calf
0 0 1 0 0 0 . . . 0 0 0 0 0 1Y
0 0 0 1 0 0 . . . 0 0 0 0 0 2Y
0 0 0 0 1 0 . . . 0 0 0 0 0 3Y
0 0 0 0 0 1− ϕ5 . . . 0 0 0 ϕ5 0 4Y
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 . . . 1− ϕ14 0 0 ϕ14 0 13Y
0 0 0 0 0 0 . . . 0 0 0 1 0 14Y
1 0 0 0 0 0 . . . 0 0 (1− α)(1− µ) α(1− µ) µ Calv.
0 0 0 0 0 0 . . . 0 0 β(1− µ) (1− β)(1− µ) µ Rest.
0 0 0 0 0 0 . . . 0 (1− γ)(1− µ) γ(1− µ) 0 µ Rec.
0 0 0 0 0 0 . . . 0 0 0 0 1 Dead

where S is the survival rate and ϕa is the probability that a female becomes mature at age a

zt+1︸︷︷︸
updated population
a vector of 19 by 1

= L︸︷︷︸
Leslie matrix

of size 19 by 19

zt︸︷︷︸
current population
a vector of 19 by 1
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Probability of a female become sexually mature

For a = 5..14

ϕa =
exp(κ+ λ ∗ a)

(1 + exp(κ+ λ ∗ a))

Example where κ = −10.021 and λ = 1.091
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Numerical solutions

Using the estimated mean from Peel, Jones and Evans (2024) for the parameters: S = 0.669,
α = 0.104, β = 0.095, µ = 0.085, γ = 0, κ = −10.021 and λ = 1.091
My own initial conditions: {89, 33, 10, 27, 25, 22, 19, 16, 12, 6, 2, 0, 0, 0, 0, 139, 81, 103, 0}
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Numerical solutions

Same initial conditions, same parameters, µ = 0.2 (was 0.085)
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Numerical solutions

Modified initial conditions: {89, 33, 10, 27, 25, 22, 19, 16, 12, 6, 2, 0, 0, 0, 0, 139, 81, 103, 150}
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Eigenvalues of L

S = 0.669, α = 0.104, β = 0.095, γ = 0, κ = −10.021 and λ = 1.091, and µ varying

19 eigenvalues by row (for each case of µ)
µ

.01 1.058 1.00 .466 .466 .766 .766 .351 .351 .118 .118 .491 .491 .513 .424 .138 .094 .047 .012 .012

.03 1.045 1.00 .459 .459 .766 .766 .352 .352 .115 .115 .494 .494 .516 .423 .138 .092 .047 .012 .012

.05 1.033 1.00 .453 .453 .766 .766 .353 .353 .112 .112 .497 .497 .518 .423 .138 .090 .047 .012 .012

.07 1.022 1.00 .447 .447 .765 .765 .354 .354 .109 .109 .500 .500 .520 .422 .138 .088 .047 .012 .012

.09 1.011 1.00 .764 .764 .441 .441 .355 .355 .105 .105 .502 .502 .522 .422 .138 .086 .047 .012 .012

.11 1.001 1.00 .763 .763 .436 .436 .356 .356 .102 .102 .505 .505 .524 .421 .138 .085 .047 .012 .012

.13 1.000 .991 .762 .762 .431 .431 .356 .356 .098 .098 .508 .508 .526 .421 .138 .083 .047 .012 .012

.15 1.000 .982 .761 .761 .425 .425 .357 .357 .094 .094 .511 .511 .528 .420 .138 .081 .047 .012 .012

.17 1.000 .973 .759 .759 .421 .421 .358 .358 .090 .090 .513 .513 .530 .420 .138 .079 .047 .012 .012

.19 1.000 .964 .757 .757 .416 .416 .358 .358 .087 .087 .516 .516 .532 .420 .138 .077 .047 .012 .012

Dominant eigenvalue tells us what happens around the equilibrium (0, 0, 0, 0, ..., 0)

1. If dominant eigenvalue is greater than one, then the trivial equilibrium is unstable
→ population grows exponentially. Dominant eigenvalue is the long-term growth rate

2. If dominant eigenvalue is less than one, then the trivial equilibrium is stable
→ population is extinct.

3. If dominant eigenvalue is equal to one, the population can be constant or extinct.
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Eigenvalues in function of parameters
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Eigenvalues in function of parameters
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Expected population vector in year t

• The expected population vector in year t is

zt = N0︸︷︷︸
initial

mature
population

λ0︸︷︷︸
dominant eigenvector
stable age distribution

t∏
i=1

Lt,

where Lt is the Leslie matrix where the following parameters
vary in time αt, βt, γt and µt and are to be estimated as N0.
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Sighting history y

• From a catalogue of whales sighting and identification, we can obtain the history for each
individual identified.

• y is the matrix of sighting history for one individual. Example on 10 years:

1 0 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 1 0


– (1, 0, 0) means that a whale is seen as a calf

– (0, 1, 0) means that a whale is seen with a calf

– (0, 0, 1) means that whale not seen or seen without a calf
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Expected number of whales with sighting history y

• Expected number of whales with sighting history y:

E(y) = N0λ0

T (y)∏
t=1

Lt⟨y∗,tPt⟩︸ ︷︷ ︸
loop through history

until first positive
identification

Tmax∏
t=T (y)

Qt⟨y∗,tPt⟩︸ ︷︷ ︸
loop through
rest of history

1

where Qt is the matrix Lt with transition probability from calving to calf
equal to zero, Pt is the observation probability matrix, y∗,t is one year of
history

• The likelihood of the dataset is obtained by assuming that observed fre-
quencies of each sighting history are Poisson distributed random variables
with expectation E(y).

• The model is fitted by maximum likelihood.
Peel D, Jones LL, Evans K (2024). Subcomponent 3: Expanding utilisation of southern right whale datasets for
estimation of national population parameters. Final Report.
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Application: IPCoD

• Age classes could be grouped (example: age 2 to age 4 are pups, age 5 to
age 14 are juveniles). Juveniles and pups would have survival rates.

• The matrix represents the vulnerable population

• Each age class must be divided into undisturbed individuals and disturbed
individuals (due to noise, etc.)

• Parameters in the Leslie matrix are obtained from statistical distributions to
simulate environmental stochasticity

• Expert elicitations would be used to determine effect of disturbance on sur-
vival and fertility

Harwood J, King S, Schick R, Donovan C, Booth C. (2013). A Protocol for Implementing the Interim Population
Consequences of Disturbance (PCoD) Approach: Quantifying and Assessing the Effects of UK Offshore
Renewable Energy Developments on Marine Mammal Populations. Scottish Marine and Freshwater Science
5. www.gov.scot/Resource
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Shy Albatross population dynamics model



Origin of our seabird model
• Tuck, Polacheck, Croxall, Weimerskirch (2001)

• Modelling impact of fishery bycatch on Crozet and South Georgia Wandering Albatross
• Deterministic, density dependant, age-structured
• Longline fishing effort dataset 5x5o from IOTC, SPC, ICCAT, Australia, Japan, New Zealand
• Tagging data from albatross



ICCAT application of model
• Tuck et al (2011)

• ERA approach to 68 seabird populations
 22 were designated high priority across all risk scores, 41 across ≥1
 Fisheries overlap investigated for 22 populations
 3 high priority albatross populations modelled

• 5 x 5o spatial pelagic longline fishing effort dataset



Crozet albatross
• Tuck, Thomson et al (2015)

• Crozet Wandering Albatross: considered 
shy and bold behaviours

• Fleets: pelagic longline fleet, fresh tuna



Shy albatross; Giant Petrels
• Thomson, Alderman, Tuck, Hobday (2015); Alderman, Tuck et al (2019)

• Impact of climate change; Impact of pests (eradication)
• Local fishery dataset: pelagic and demersal longline, and trawl
• Future climate scenarios for rainfall and days over 23oC – future projections



Seabird model details
• Population

• Stages: chicks, juveniles, adults (breeding, failed breeders, non-breeding)
– Stage-specific, month-specific at-sea distributions
– Stage-specific survival rates

• Sex specific
• Monthly time step (for at-sea distribution)
• Density dependence acts on 

– chick survival (related to breeding population size)
– juvenile survival (related to 1+ population size)



Seabird model details
• Fisheries bycatch

• Spatial overlap between birds and fisheries
• Each fleet has an estimated ‘catchability’, can be time blocked 
• Observed numbers of birds caught used to estimate parameters



Seabird model details
• Environmental variables

• Chick mortality rate can be related to an environmental variable through a specified 
functional form with estimated parameters



Seabird model details
• Response variables

• Numbers of breeding pairs
• Numbers of chicks fledged
• Annual adult survival rate
• Annual juvenile survival rate
• Bycatch observations



Seabird model and windfarms
• Windfarm = Fishing fleet (stationary effort distribution)

– Seabird stage-based at-sea distribution overlaps with wind/fishing effort
– Fit a model to existing data, then project into the future with windfarm
– Windfarm ‘catchability’ or ‘bycatch’ must be assumed

• Low data populations
– Assume parameters such as survival, density dependence, population size
– OR use a less data demanding model / method



Australia’s National Science Agency

CSIRO Environment
Robin Thomson
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Thank you



Population dynamics modelling: 
Priority shorebirds

Toby Ross, Marcel Klaassen

© Phil Battley

Bass Strait Ecosystem and Offshore Renewable Energy
Day 2: Species distribution and offshore wind impact pathways

• recruitment and survival monitoring
• movement behaviour



Migratory shorebird populations: 
research for management and recovery
Project 4.17

© Phil Battley
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Shorebirds and 
the world
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Birds in crisis
▸Australia is home to ~37 species of migratory 

shorebirds
▸Population declines in 3 decades prior to ~2015

© Phil Battley

Eastern Curlew Population Trend

© Dan Weller

From NESP Project 1.21 
Australia’s migratory shorebirds: 
Trends and prospects
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The story 
so far…
▸Populations of some species 

stabilising in recent years
▸Not clear what contributed to the 

stabilisation

o Improved survival?

o Successful conse rvation 
e fforts?

© Phil Battley
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www.birdmark.net

http://www.birdmark.net/
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What have 
we done?

- 596,000 observations
- 80,564 individual birds
- ~50 years of data
- 12 species



To what extent do 
non-breeding 
shorebirds in Australia 
exhibit site fidelity?

© Simon Price
Retrieved from 
https://www.kuwaitbirds.
org/birds/ruddy - turnstone
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Site fidelity
Good:
- Capitalise on prior knowledge
- Better exploit resources and 

avoid predation risks

© Toby Ross

Bad:
- Global change – tidal flat 

reclamation
- Unable to adapt?
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Red Knot

Red-necked Stint

Ruddy Turnstone
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Red Knot

Red-necked Stint

Ruddy Turnstone
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Red Knot

Red-necked Stint

Ruddy Turnstone
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- Knowledge is important to 
shorebirds

- Forcing birds to change may cost 
them

© Phil Battley

Site Fidelity 
is high



Shorebird survival and 
juvenile recruitment

© Simon Price
Retrieved from 
https://www.kuwaitbirds.
org/birds/ruddy - turnstone
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Survival modelling
- Using CJS models in JAGS to 

estimate:

- Annual adult survival

- Average juvenile survival

- Recapture effort

- Site specific

- Method specific
- Implement into annually updated 

dashboard for 12 species
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Juvenile recruitment
▸ Can indicate breeding success and 

recruitment; important aspect of 
population dynamics

▸ Calculated as the proportion of a 
bird population that are juveniles
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Juvenile recruitment

Ross et al. Sci. Tot. Env. (2024) 955



Juvenile proportions increase over 
time, with some variation between 
species

Dr Sara Ryding
Postdoctoral Researcher



Movement behaviour 
of shorebirds and 
offshore renewable 
energy

© Simon Price
Retrieved from 
https://www.kuwaitbirds.
org/birds/ruddy - turnstone
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Caveats

▸ Is focus on priority species only
warranted?

▸Direct impacts of windfarms?

▹migratory movements

https://drive.google.com/file/d/1P6L9pUGqapLe0ltsEUYnTMkQYb8qAAWk/view?usp=sharing
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© Ken Gosbell

▸ Is focus on priority species only
warranted?

▸Direct impacts of windfarms?

▹migratory movements

▹day- to-day movements

▹where (3D) do they go when?

developing an understanding

Caveats Sanderlingsbetween Warrnambool and Coorong  



Latitude - Y

Al
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ud
e 

-Z

colder

warmer

Temperature °C wind Visibility

Galtbalt et al. Movement Ecology (2021) 9:32

Caveats
▹where (3D) do they go when?



• Whimbrel: 9 individuals

• Far-eastern curlew: 17 individuals

@ RSPB

@ RSPB

GPS-GSM tracking 
by AWSG 2017-2019

Caveats
▹where (3D) do they go when?
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Caveats
▹where (3D) do they go when?

cloud cover example
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• Whimbrel

• Far-eastern curlew

1 23 4

Caveats
▹where (3D) do they go when?



• Whimbrel

• Far-eastern curlew
Median = 538 
mMedian = 156 

m

Median = 719 
mMedian = 133 

m

fli
gh
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, m
 (a
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)

number of in-flight fixes

75% of in-flight fixes were 
below 1000 m a.g.l. 

Caveats
▹where (3D) do they go when?
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Caveats

▸ Is focus on priority species only
warranted?

▸Direct impacts of windfarms?

▹migratory movements

▹day- to-day movements

▹where (3D) do they go when
▸Build real- time habitat suitability models

▹To guide planning

▹To develop mitigation strategies and 
operational models
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... and still other Bass-strait species

summer 2023-2024: Australasian Gannet; Little Penguin; Wedge-tailed shearwater; Black-faced cormorant 
(data John Arnould)
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Thank you!

▸There is good potential to monitor population 
dynamics of key shorebird species

▸Movement behaviour observations and analyses 
for the development of real - time habitat 
suitability models 

Toby Ross t.ross@deakin.edu.au
Marcel Klaassen marcel.klaassen@deakin.edu.au

To summarise



Population Viability Analysis:
Orange-bellied parrots

Nick Beeton
CSIRO



Data sources

• Life history parameters (fecundity, 
mortality) largely determined by 
annual mark-recapture studies at 
Melaleuca TAS, run since 1979

• OBPs probably breed only at 
Melaleuca (Stojanovic et al. 2018), 
so can assume closed-population 
for breeding season



Holdsworth (2006; PhD thesis)

• Used data between 1993 to 2004
• Model selection by AICc used to 

determine time-dependence
• Best model selected had survival 
𝜙𝜙 dependent on juvenile/adult 
status and year, capture 
probability p dependent on year

𝜙𝜙𝑗𝑗 𝑡𝑡 𝜙𝜙𝑎𝑎 𝑡𝑡 𝑝𝑝(𝑡𝑡)
• Fecundity measured 1.62 per 

female on average



Holdsworth, Dettmann & Baker (2011)

• Similar analysis using updated data to 2009, with same model 
selected 𝜙𝜙𝑗𝑗 𝑡𝑡 𝜙𝜙𝑎𝑎 𝑡𝑡 𝑝𝑝(𝑡𝑡)



Stojanovic et al. (2020)

• Used same data up to 2017
• After steep decline in 2010, 

a captive breeding program 
was introduced. Data was 
subset into 1995-2010 vs 
2011-2017

• Not enough data for 
survival by year, so linear 
trend used instead

• Best model was 
𝜙𝜙j 𝑡𝑡 𝜙𝜙a ⋅ 𝑝𝑝(⋅)



Population Viability Analysis modelling

• PVA calculates probability of extinction in a given timeframe
• Used to evaluate management scenarios and/or perform 

sensitivity analyses on model parameters
• Uses stochastic modelling to simulate demographic stochasticity
• Randomly varies relevant parameters to simulate environmental 

stochasticity



Drechsler, Burgman & Menkhorst (1998)

• Survival modelled by 
𝑁𝑁𝑥𝑥 𝑡𝑡 + 1 ~ Bin 𝑁𝑁𝑥𝑥 𝑡𝑡 , 𝑠𝑠𝑥𝑥 𝑓𝑓 𝑁𝑁𝑥𝑥 𝑡𝑡
• Reproduction sampled from table
• Survival 𝑠𝑠𝑥𝑥 and variability taken 

from 1991-1995 mark-recapture 
results

• Function 𝑓𝑓 depends on “scramble” 
or “contest” competition at high 
densities



Stojanovic et al. (2023)
• Uses software platform 

VORTEX
• Juvenile mortality based 

on 2017 endpoint of 
linear trend (80%) in 
Stojanovic et al. (2020)

• Parametric stochasticity 
(+/- SD) not justified

• Results unsurprisingly 
show population 
unsustainable without 
continuous management



Thoughts

• Scope for more robust analysis
• E.g. state space modelling

• Requires access to raw mark-recapture data
• Can incorporate measurement uncertainty

• coefficient of linear trend in 𝜙𝜙𝑗𝑗(𝑡𝑡)
• interannual variability in 𝜙𝜙𝑥𝑥, 𝑝𝑝 etc

• Without raw data, limited to current assumptions
• Point value estimates of e.g. 𝜙𝜙𝑗𝑗
• Stochastic effects less robust

• Carrying capacity unlikely to be an issue



Migration

• Radio tagging performed on 46 
OBPs in 2024

• 12 birds detected after leaving 
Melaleuca (mostly 25 Mar - 8 Apr)

• Small subset of birds during a 
single season makes results hard 
to generalise

• Return data may help?



Christine Erbe and Cristina Tollefsen
Centre for Marine Science and Technology (CMST)

Perth, WA

Bass Strait Ecosystem and Offshore Renewable Energy:

Underwater Noise 

1



Sound propagates well in water (as opposed to light). 
Animals use sound passively (listening) and actively.

• Acoustic communication
o Reproduction (e.g., male whale song; male fish sing on spawning grounds)
o Rearing of young (e.g., mother-pup contact calls in seals)
o Coordination of group behaviour (e.g., signature whistles of dolphins)

• Environmental sensing
• Predator detection
• Navigation (e.g., biosonar)
• Foraging, prey detection



Effects of Noise on Marine Fauna

Range from Noise Source

Ty
pe

 o
f E

ffe
ct

Injury

Temporary hearing loss

Behavioral response

Acoustic masking

Physiological stress response

I

(Orientation, breathing, diving, resting, 
avoidance, functional behav., 

echolocation, vocalization)

(Communication, echolocation)

Limit of 
Audibility

(cortisol from skin, blood, poo, 
breath samples)

Erbe C et al. (2022) The effects of noise on animals. In: Erbe C, Thomas JA (eds) Exploring Animal Behavior Through Sound. Springer pp 459-506
Southall BL et al. (2007) Marine mammal noise exposure criteria: Initial scientific recommendations. Aquat Mamm 33 (4):411-521
Southall BL et al. (2019) Updated scientific recommendations for residual hearing effects. Aquat Mamm 45 (2):125-232 
Southall BL et al. (2021) Assessing the Severity of Marine Mammal Behavioral Responses to Human Noise. Aquat Mamm 47 (5):421-464
Popper AN, Hawkins AD (2019) An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes. J Fish Biol 94:692-713. 
Popper AN et al. (2022) Offshore wind energy development: Research priorities for sound and vibration effects on fishes and aquatic invertebrates. J Acoust Soc 
Am 151 (1):205-215. 



Photo: Christine Erbe

https://www.windenergy.org.nz/offshore-wind/

https://www.energy.vic.gov.au/renewable-energy/offshore-wind-energy

Noise sources related to offshore wind energy

Construction phase:
Pile driving / mooring 
Increased vessel presence

Operation phase:
Some noise from nacelle 
 and vibrations
Offshore substation

Changes in vessel traffic ?



Implications of a 3 dB increase in ocean ambient noise:
In scenarios where hearing is ambient noise limited, the active 
acoustic space reduces to 70% because of masking
1. Whale communication

2 km
1.4 km

2. Prey detection
1000 m

700 m

3. Predator detection
1.5 km
1 km

4. Environmental cue detection
500 m
350 m

Erbe C et al. (2016) Communication masking in marine mammals: A 
review and research strategy. Mar Pollut Bull 103:15-38



Ingredients for a noise model

Sources Propagation through 
the environment Receivers

• Source spectrum & level
• Physical properties
• Impulsive vs continuous
• Location & depth

• Sound speed profile (T,S,d)
• Bottom geoacoustic

properties
• Surface roughness

• Location & depth
• Frequency sensitivity
• Response/impact 

metrics



Surface roughness (wind)

Sound speed profile (oceanography)
• Depends on T and S
• Changes in time and space

Bottom properties:
• Bathymetry
• Sediment type
• Layer(s) thickness
• Bedrock type

Propagation through the water
Your outputs are our inputs!

10
0-

40
00

 m

100-200m

10-100 km

d
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Sound channel

summer winter



Project Objectives
1. Characterise the underwater sound propagation conditions

in Bass Strait
2. Build a marine soundscape model that includes the dominant 

contributions of geophony (wind-driven noise), biophony (whale 
song, fish choruses), anthropophony (ships)

3. Validate the current model
4. Predict soundscape into the far future (add operating windfarms, 

consider changes in ship traffic, changes in ocean 
weather/climate?, changes in megafauna abundance and 
distribution?)

5. Model noise footprints from windfarm 
construction

6. Model noise exposures of whales



Project Objectives
1. Characterise the underwater sound propagation conditions

in Bass Strait
=> ref. NESP Project E2, 2021

% Mud % Sand

% Gravel Sediment 
Thickness

Salinity Temperature

SlopeBathymetry

Metocean, seafloor and geological 
parameters affecting sound propagation



Project Objectives
1. Characterise the underwater sound propagation conditions

in Bass Strait
=> ref. NESP Project E2, 2021

10

5 km grid => 500 m grid
Erbe C, Peel D, Smith JN, Schoeman RP (2021) Marine 
acoustic zones of Australia. J Mar Sci Eng 9 (3):340. 



Project Objectives
1. Characterise the underwater 

sound propagation conditions
in Bass Strait
=> ref. NESP Project E2, 2021

Machine Learning to cluster sound-
propagation transects.
Model propagation loss as a 
function of range and depth, along 
64 cluster centroids per acoustic 
zone.
=> Reduces the need to model 
every sound source and every 
receiver at every point in space 
and time to a look-up of 
propagation loss.

11



Project Objectives
2. Build a marine soundscape model that includes the dominant contributions of geophony 
(wind-driven noise), biophony (whale song, fish choruses), anthropophony (ships)

Baseline

!" = 10 log !"! ) + 10 ⁄#$! %,' () + 10 ⁄#$" %,' () + 10 ⁄#$#$! %,' () + 10 ⁄#$% %,' ()

Wind Fish Whales Ships

Measured

Modelled

Ex. Perth Canyon
16 years of IMOS
Passive acoustic 
observatories



Offshore Weather: Wind, Rain, Hail, Snow

Noise goes up with rain [mm/h] 
and wind [m/s].

Erbe C et al. (2015) The marine soundscape of the Perth Canyon. Prog Oceanogr 137:38-51



Humpback Whales, Minke Whales, 
Killer Whales, … 

© Bec Wellard

Nils: 
https://commons.wikimedia.org/wiki/File:
Balaenoptera_acutorostrata_2901229.jpg



Mulloway 
(Argyrosomus japonicus)

Westralian dhufish 
(Glaucosoma hebraicum)

Black jewfish
(Protonibea diacanthus)
Terapontids: possibly
Fourlined trumpeter
Barred grunter

Western rock lobster
(Panulirus cygnus)

Orbiculate batfish
(Platax orbicularis)

Unidentified fish calls

Myctophids:
e.g. Lanternfish

Fish Sounds

Images: Roger Swainston
Photo: Rokuc Groenweld

Parsons, M.J.G. et al. 2014 In situ calls of Western Australian dhufish (Glaucosoma hebraicum) Acoust Austral 42(1): 31-35
Parsons, M.J.G., McCauley, R.D., and Mackie, M.C., 2013 Characterisation of mulloway advertisement sounds, Acoust Austral 41(3): 196-201 
Parsons, M.J.G. et al. 2013 Sound production by the West Australian dhufish (Glaucosoma hebraicum). J Acoust Soc Am 134(4): 2701-2709 
Parsons, M.J.G., McCauley, R.D., and Thomas, F., 2013, Sound of fish calls off Cape Naturaliste, Western Australia, Acoust Austral 41(1):58-63. 
Parsons, M.J.G. et al. 2012, In situ source levels of mulloway (Argyrosomus japonicus) calls, J Acoust Soc Am  132(5):3559-68

Compiled by Miles Parsons



Project Objectives
2. Build a marine soundscape model that includes the dominant contributions of geophony 
(wind-driven noise), biophony (whale song, fish choruses), anthropophony (ships)
=> Input data needed (wind measurements/hindcast, megafauna abundance, ship logs/AIS)
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FIG. 1. Summary of the components of ambient noise at the re- 
cording position in the Timor Sea. The shading indicates the 
range of the prevailing background noise. The chorus spec- 
trum levels shown are the maximum observed. A chorus was 
present for only a few hours at each occurrence. 

the periods of measurement, resulted in wind depen- 
dent noise at frequencies above 100 Hz, being generally 
lower than the biological noise. The high level bio- 
logical choruses shown in Fig. 1 were evident for only 
a few hours at a time, the frequency of occurrence 
being daily in the case of chorus at 2010 h and far less 
frequent in the case of the other two. 1 

The prevailing noise from 100 Hz to 2 kHz was com- 
posed of bursts of noise, each of a few seconds dura- 
tion, occurring apparently randomly in level and time 
in such numbers that the noise was continuous when 
averaged over a few seconds (shown by the shaded area 
in Fig. 1). Individual bursts of sound rose as high as 

,,4 
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FIG. 3. Spectrum of sound A measurcd with a 6% bandwidth 
filter. The dashed line indicates the background noise. 

the levels marked as maximum in Fig. 1. Often the 
separation of these higher bursts was coinparable to 
their duration, resulting in a high, though intermittent, 
background noise. Aurally, a number of different 
sounds could be distinguished and were quite distinctive 
in character. Five of these were common, with at least 
two, and often three, occurring at any one time, and 
responsible for most of the prevailing noise in this fre- 
quency band. One was the sound apparently responsible 
for some of the observed choruses, and has been dis- 
cussed elsewhere. z The remaining four sounds, labeled 
A, B, C, and D, are described below. These did no/ 
appear to be related to the choruses. In spite of the 
large number of occurrences of the four sounds, little 
variation in the acoustical characteristics of each was 
observed. The features described below and shown in 
the spectra, speetrograms, and waveforms of Figs. 
2-8 can therefore be considered to be generally ap- 
plicable. 

Sound A is a musical whine or moan of about 3 s with 
distinctive harmonic structure, the fundamental Ire- 
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FIG. 4. Spectrogram and waveform of sound B. Spectrogram 
filter bandwidth: 6 Hz. Waveform bandwidth: 30 Hz to 10 kHz. 

1057 J. Acoust. Soc. Am., Vol. 68, No. 4, October 1980 Douglas H. Cato: Sounds of biological origin in the Timor Sea 1057 
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MacGillivray A, de Jong C (2021) 
A reference spectrum model for 
estimating source levels of marine 
shipping based on Automated 
Identification System data. J Mar 
Sci Eng 9 (4):369

Cato DH (1980) Some unusual sounds of 
apparent biological origin responsible for 
sustained background noise in the Timor Sea. J 
Acoust Soc Am 68 (4):1056-1060
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Project Objectives

Ship Noise Wind Noise Ship – Wind Noise
3. Validate the current model
=> with in situ recordings from the modelled year

NESP E2, 2021

Erbe C, Schoeman RP, Peel D, Smith JN (2021) It often howls more than it chugs: Wind 
versus ship noise under water in Australia’s maritime regions. J Mar Sci Eng 9 (5):472



Project Objectives
4. Predict soundscape into the far
future
• add operating windfarms
• consider changes in ship traffic
• changes in ocean weather/climate?
• changes in megafauna abundance and 

distribution?

=> Inputs from other NESP projects
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is less clear for the ships, likely related to the bandwidth of
the ship noise (only noise in the 25 Hz–1 kHz band was
included).

B. Effect of distance, size, and wind speed

By means of the general linear model [Eq. (1)], it was
possible to separate the influence of the three factors record-
ing distance, wind speed, and turbine size on the received
noise level. All three factors turned out to be significant, and
the effects are plotted separately in Fig. 3. The model had
overall good explanatory power (R2 ¼ 0.67, N ¼ 46). The
effect of the recording distance was "23.7 dB/decade [stan-
dard error (SE) ¼ 3.1 dB, t ¼ "7.55, p < 0.001]. The effect
of the wind speed was 18.5 dB/decade (SE ¼ 5.8 dB, t ¼
3.20, p ¼ 0.003), and the effect of the turbine size was 13.6
dB/decade (SE ¼ 3.8 dB, t ¼ 3.62, p < 0.001). The dataset
was insufficiently balanced to allow for a test of differences
between foundation types. The constant of the model was
109 dB re 1 lParms (SE ¼ 1.7 dB), which can be interpreted
as the grand mean of all data, normalised to a recording dis-
tance of 100 m, a size of 1 MW, and a wind speed of 10 m/s.

FIG. 2. (Color online) Sound pressure levels measured from offshore wind
turbines and ships at various distances. Wind turbine measurements are
taken from Table II. Data point from Madsen et al. (2006) are indicated by
the black outline and ship noise from the recordings of Hermannsen et al.
(2014) are summed in the frequency range 25 Hz–1 kHz. Violin plots to the
right show distributions of measured broadband noise levels from a station
next to a busy shipping lane (Great Belt, station 36) and a station at a low
noise site (Baltic Sea, station 37). Measurements are from the BIAS project
(Mustonen et al., 2019).

FIG. 3. (Color online) Influence of distance, wind speed, and turbine size on measured sound pressure level. For each of the three plots, the measurements
have been normalised to a distance of 100 m, a wind speed of 10 m/s, and a turbine size of 1 MW except for the parameter plotted on the x axis. Solid lines
represent best fitting straight lines, and broken lines indicate the standard error.
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J. Acoust. Soc. Am. 148 (5), November 2020 Tougaard et al. 2889

https://doi.org/10.1121/10.0002453

Tougaard J et al. (2020) How loud is the underwater noise from 
operating offshore wind turbines? J Acoust Soc Am 148 (5):2885-2893
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5. Model noise footprints from windfarm construction

Project Objectives

Wilkes DR, Gourlay TP, Gavrilov AN (2016) Numerical modeling of radiated sound 
for impact pile driving in offshore environments. IEEE J Ocean Eng 41 (4):1072-1078



Project Objectives
5. Model noise footprints from windfarm construction
6. Model noise exposures of whales

Regions of Risk vs
Regions of Opportunity

Williams R, Erbe C, Ashe E, Clark CW (2015) Quiet(er) 
marine protected areas. Mar Pollut Bull 100 (1):154-161

Whale density Ship density

Risk areas Opportunity areas
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Thank You !



killer whales talking   --- 1 ship approaching

Noise level
dB re 1µPa

Erbe et al. (2012) J Acoust Soc 
Am 132: 423-428
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Bonney Upwelling
Eden Upwelling

Southern Ocean 

Pygmy Blue Whale Foraging Regions

Melbourne

Portland

TAS

VIC

Gippsland 

Transfer Functions: 
days of disturbance        change in vital rates 

Feeding activity (summer months)

 Expert Elicitation: Minke Whale
     Bioenergetics: achievable



Western Population 
~ 2500 individuals (2021)
+6% increase

Southern Right Whale Distribution

Eastern Population 
< 500 individuals
last estimate: 268 total (2017)
+4% total increase

Transfer Functions: 
days of disturbance        change in vital rates 

Breeding activity (winter months)

?



Historic Whaling Data

• Dawbin 1986



How many individuals are exposed to the disturbance 
    and for how long?

What’s the maximum abundance / worst case scenario ?

Is there a detectable effect if ALL individuals are exposed to noise?

Number of 
individuals 
exposed to noise
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