

Evidence for social transmission of foraging behaviour in the Australian sea lion

Nathan Angelakis^{A,B,*} , Roger Kirkwood^B, Sean D. Connell^A and Simon D. Goldsworthy^{A,B}

For full list of author affiliations and declarations see end of paper

***Correspondence to:**

Nathan Angelakis
Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
Email: nathan.angelakis@adelaide.edu.au

Handling Editor:

Laura Wilson

ABSTRACT

In mammals, social transmission of information from mother to offspring can help young to develop specialised and complex foraging behaviours. Although this social transmission is well recognised in some marine mammals, no conclusive evidence has been reported for otariids (fur seals and sea lions). Here, using animal-borne video and movement data from an adult female Australian sea lion, we provide evidence for mother-to-pup social transmission of foraging behaviour. Social transmission of foraging behaviour may be a component of development in Australian sea lions, whereby prolonged maternal care (~18 months) could provide mothers the opportunity to demonstrate foraging behaviours to pups.

Keywords: animal-borne video, Australian sea lion, foraging behaviour, life-history, maternal strategy, pinniped, reproductive cycle, social transmission.

Introduction

In mammal species with long periods of maternal care (several years) (Mann and Sargeant 2003; Lonsdorf 2006; Weiss *et al.* 2023), mothers can demonstrate complex and specialised foraging behaviours to their young, assisting them in learning how to utilise different or difficult to exploit prey types and habitats (Estes *et al.* 2003; Ford and Ellis 2006; Kopps *et al.* 2014). Such examples include eastern chimpanzee mothers (*Pan troglodytes schweinfurthii*) demonstrating the use of sticks for 'termite fishing' to their young (Lonsdorf 2006). This mother-to-offspring transmission of foraging behaviour is well recognised in some marine mammals, including cetaceans (Ford and Ellis 2006; Sargeant and Mann 2009; Whitehead 2018) and sea otters (*Enhydra lutris*) (Estes *et al.* 2003). For example, bottlenose dolphin calves (*Tursiops* sp.) learn from mothers how to use sponges to protect their rostrums when foraging on the seabed (Kopps *et al.* 2014). In pinnipeds, pups are known to accompany mothers at sea in walruses (*Odobenus rosmarus*) (Miller and Kochnev 2021) and in phocid (true seal) species, such as Weddell seals (*Leptonychotes weddellii*) and harbor seals (*Phoca vitulina*) (Jørgensen *et al.* 2001; Sato *et al.* 2003). However, no conclusive evidence for social transmission of foraging behaviour has been reported in otariids (fur seals and sea lions). Here, we present animal-borne video and movement data from an adult female Australian sea lion (*Neophoca cinerea*) at sea with her pup, providing direct evidence for the social transmission of foraging behaviour in an otariid.

Australian sea lions have a unique life history. Breeding occurs across an ~18-month cycle that is both asynchronous (occurring at different times of the year at different colonies) and aseasonal (showing no relationship to seasonal climatic patterns), across the species' distribution (Higgins 1993; Shaughnessy *et al.* 2011; Goldsworthy *et al.* 2021). This supra-annual reproductive cycle contrasts the highly seasonal, annual and synchronised reproductive cycles conformed to by other seals (Costa 1991; Atkinson 1997). In addition to their unique reproductive cycle, adult female Australian sea lions have long-term fidelity to natal foraging habitats (Lowther *et al.* 2011, 2012), which drives the highly subdivided, fine-scale genetic structure of their populations (Campbell *et al.* 2008; Lowther *et al.* 2011). Identifying what selective factors could have shaped

Received: 10 October 2025

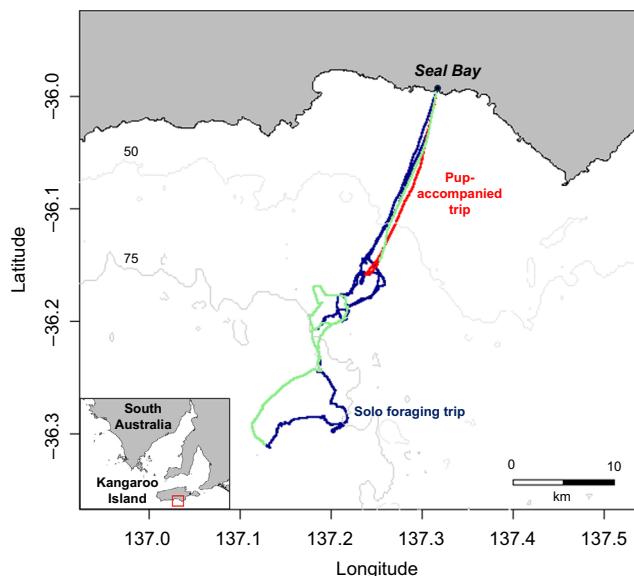
Accepted: 6 January 2026

Published: 10 February 2026

Cite this: Angelakis N *et al.* (2026) Evidence for social transmission of foraging behaviour in the Australian sea lion. *Australian Journal of Zoology* **74**, ZO25050.
doi:10.1071/ZO25050

© 2026 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ([CC BY-NC-ND](https://creativecommons.org/licenses/by-nc-nd/4.0/)).


OPEN ACCESS

the unique reproductive cycle and life-history of the Australian sea lion is key to better understanding the ecological and evolutionary biology of the species.

Previous observations of Australian sea lions have identified mother–pup pairs travelling at sea together (McIntosh and Pitcher 2021). Mother–pup pairs have also been sighted at breeding/haul-out sites 20–60 km from their natal colony (Lowther and Goldsworthy 2011; Kirkwood and Goldsworthy 2013), providing preliminary evidence that Australian sea lion pups accompany their mothers at sea, as it is unlikely that pups could otherwise reunite with their mothers at such distant locations from their natal colony. However, interestingly, evidence for pups accompanying mothers to sea has not been found in previous paired tracking studies (Fowler *et al.* 2007; Lowther and Goldsworthy 2012). Additionally, mitochondrial DNA (mtDNA) analyses have not found evidence that foraging specialisation/ecotypes are maintained along matrilines (Lowther *et al.* 2012). Here, we provide direct evidence for mother-to-pup social transmission of foraging behaviour in the Australian sea lion, using video, dive and location data collected from an adult female from Seal Bay on Kangaroo Island in South Australia. In addition, we compare differences observed in the movement, diving and foraging behaviour of the mother between a pup-accompanied trip and a solo trip at sea.

Materials and methods

In June 2023, data were collected from an 8-year-old Australian sea lion female that had an 11-month-old pup (Supplementary Material Table S1) from Seal Bay Conservation Park (35.994°S, 137.317°E) on Kangaroo Island in South Australia (Fig. 1). The female was fitted with an archival underwater camera (CATS Cam, 135 × 96 × 40 mm, 400 g), positioned at the base of the scapula and an Argos-linked GPS logger with an integrated time–depth recorder (SPLASH-10, Wildlife Computers, 100 × 65 × 32 mm, 200 g), positioned posterior to the camera. In addition, a triaxial accelerometer and magnetometer (Axy-5 XS, TechnoSmArt, 28 × 12 × 9 mm, 4 g) was positioned at the crown of the head. To attach the instruments, the adult female was initially sedated with Zoletil® (~1.3 mg/kg, Virbac), administered intramuscularly via a syringe dart (3.0 mL syringe body with a 14-gauge 25-mm barbed needle, Paxarms), delivered remotely by a dart gun (MK24c Projector, Paxarms). The female was then anaesthetised using Isoflurane® (5% induction, 2.0–3.0% maintenance with medical-grade oxygen) for ~20 min while instruments were attached. Isoflurane was delivered via a purpose-built gas anaesthetic machine, using a Cyprane Tec III vapouriser (The Stinger™ Backpack anaesthetic machine, Advance Anaesthetic Specialists). Throughout anaesthesia, vital signs (e.g. respiratory rate, capillary refill and palpebral reflex) were continuously monitored and a pulse oximeter

Fig. 1. Dead-reckoned foraging path of an adult female Australian sea lion from Seal Bay, for an 8-h pup-accompanied trip (red) and a ~3-day solo foraging trip (dark blue). Green segments indicate where video data were available. Isobaths represent depth contours at 50 (light grey) and 75 m (dark grey).

was clipped to the tongue to monitor heart rate and blood oxygen levels. All bio-logging instruments were preadhered to neoprene patches that were then glued to the pelage on the dorsal midline of the female, using a two-part quick-setting epoxy (Selleys Araldite® 5 Minute Epoxy Adhesive).

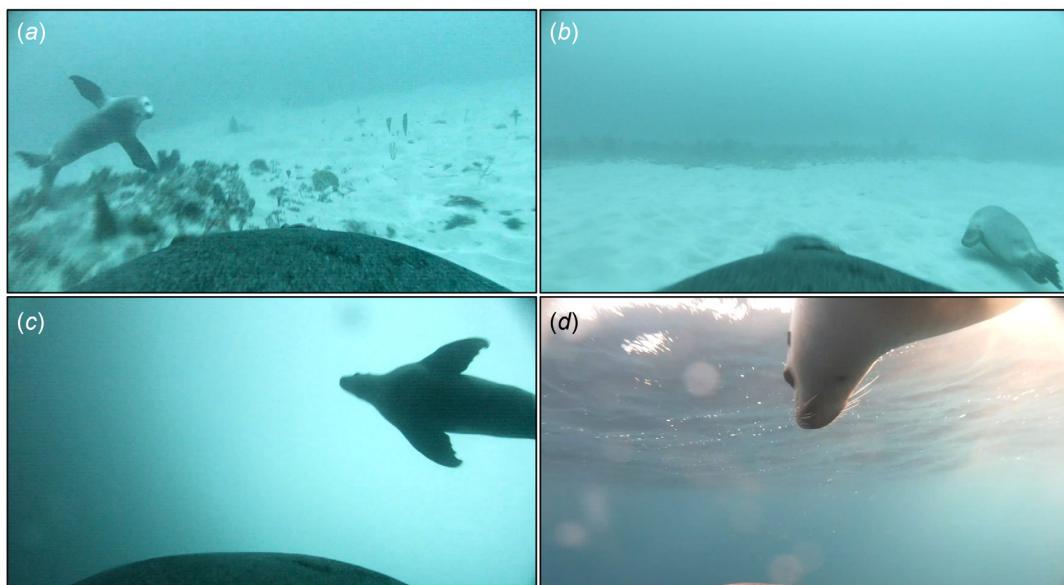
The satellite-linked GPS logger collected Fastloc® locations when the animal surfaced and the time–depth recorder measured depth every second. These depth data were analysed in *R* using the *diveMove* package (Luque 2007), which identified descent, ascent, bottom and surface phases for each dive. Triaxial accelerometer and magnetometer data were used to dead-reckon at-sea movement from the GPS data, using the methods outlined in Angelakis *et al.* (2023). High-definition video (forward-facing) was collected while the female was at sea at depths greater than 5 m during daylight hours (from 0800 to 1700 hours local time).

Analysis of the video was conducted using the open-source Behavioral Observation Research Interactive Software (BORIS, ver. 7.12.2). The duration of time spent in different benthic habitats and the duration of predation events were recorded. The at-sea behaviour of the pup was also recorded. Benthic habitats were classified using the methods in Angelakis *et al.* (2024). The proportion of time allocated to different benthic habitats for the pup-accompanied trip and the solo trip was compared using a permutational multivariate analysis of variance (PERMANOVA). Firstly, a distance matrix was calculated, using Bray–Curtis distance. A PERMANOVA (permutations = 999) was then run, using the *vegan* package in *R* (Dixon 2003), to assess statistical differences in the

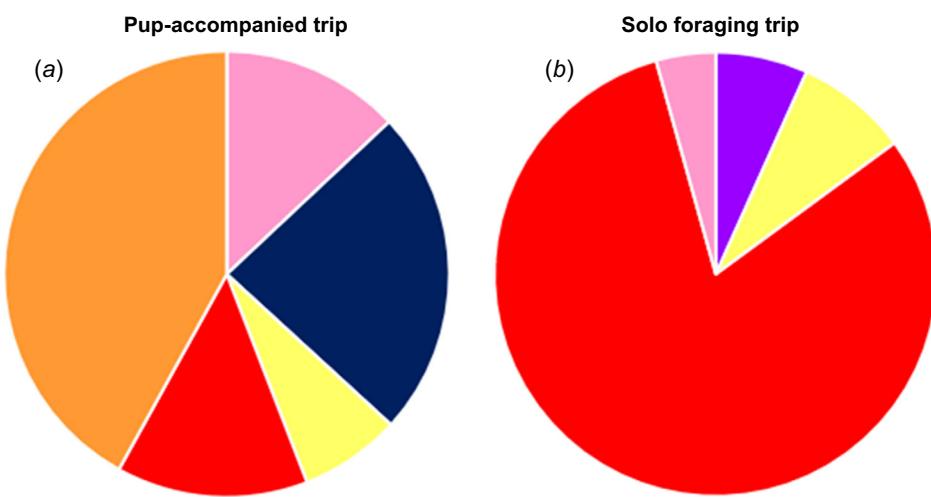
allocation of time across benthic habitats between the two trips. Dive performance was compared between the two trips, based on the durations of dive phases. As Australian sea lions are benthic predators (Peters *et al.* 2015; Berry *et al.* 2017; Goldsworthy *et al.* 2019) that maximise bottom time when foraging (Costa and Gales 2003; Fowler *et al.* 2007), statistical differences between bottom duration, dive duration and bottom depth were assessed. These variables exhibited non-normal distributions for both trips, therefore non-parametric Wilcoxon rank-sum tests were conducted to assess significant differences between the pup-accompanied trip and the solo foraging trip.

Ethics approval

This research was reviewed and approved by The University of Adelaide Animal Ethics Committee (#S-2021-001), PIRSA Animal Ethics Committee (#16/20) and the Department for Environment and Water (Permit/Licence to Undertake Scientific Research #A24684-22/23 and Marine Parks Permit to Undertake Scientific Research #MR00071-7-R).


Results

Dead-reckoned movement data showed the adult female undertook an 8-h pup-accompanied trip (Fig. 1), followed by an ~11.5-h haul-out period (Supplementary Fig. S1), before a ~3-day solo foraging trip (Fig. 1). The pup-accompanied trip achieved a maximum distance from the colony of ~20 km,


whereas the solo foraging trip achieved a maximum distance of ~40 km from the colony (Fig. 1).

A total of 12 h and 1 min of video across three days at sea was collected from the animal-borne camera. This comprised 2 h and 13 min of video from the 8-h pup-accompanied trip, with 47 dives observed and the pup visible in 35 of these (Fig. 2), and 9 h and 48 min of video from a ~3-day solo foraging trip, with 164 dives observed. The benthic habitats that were used, differed between the two trips (PERMANOVA: $P = 0.001$, $F = 39.659$, d.f. = 389). For the pup-accompanied trip, the majority of bottom time was spent on macroalgae-dominated reefs and macroalgae meadows (Fig. 3a), whereas on the solo foraging trip the adult female mostly spent bottom time across deeper invertebrate-dominated reefs (Fig. 3b). Three prey attempts were observed on the pup-accompanied trip (averaging an attempt approximately every 16 dives). Two of these were unsuccessful and one resulted in the capture of a giant cuttlefish (*Sepia apama*) by the mother. On the solo foraging trip, a total of 172 prey capture attempts were observed (averaging an attempt approximately every dive), with 44 (26%) of these attempts being successful.

Diving behaviour also differed between the two trips (Table 1). Bottom durations on the pup-accompanied trip (median = 71 s), were significantly shorter than those on the solo foraging trip (median = 112 s) (Wilcoxon rank-sum test: $U = 25468$, $P \leq 0.001$), as well as total dive durations, (median = 175 and 224 s, respectively) (Wilcoxon rank-sum test: $U = 21131$, $P \leq 0.001$). Bottom depths were also significantly shallower on the pup-accompanied trip (median = 45.0 m), compared to the solo foraging trip (median = 70.0 m) (Wilcoxon rank-sum test: $U = 12191$, $P \leq 0.001$).

Fig. 2. Still images taken from an animal-borne video camera, attached to an adult female Australian sea lion, highlighting a pup-accompanied trip at sea: (a) travelling across sponge garden habitat, (b) swimming over bare sand habitat, (c) ascending, and (d) at the surface.

Fig. 3. Percentage of bottom time in different benthic habitats, identified from animal-borne video from an adult female Australian sea lion, on (a) a pup-accompanied trip, and (b) a solo foraging trip. Benthic habitats are highlighted for macroalgae reef (orange), macroalgae meadow (dark blue), invertebrate reef (red), sponge garden (pink), bare sand (yellow) and invertebrate boulder (purple) habitats.

Table 1. Summary of trip and dive data collected from a GPS logger and time–depth recorder from an adult female Australian sea lion, for a pup-accompanied trip and a solo foraging trip.

Trip	Trip duration (days, h, min)	Descent duration (s)	Ascent duration (s)	Bottom duration (s)	Dive duration (s)	Bottom depth (m)	Total dives	Dive frequency (h ⁻¹)
Pup-accompanied trip	0, 8, 3	44 (1–101)	48 (1–140)	71 (1–153)	175 (3–253)	45.0 (3.5–70.0)	152	18.9
Solo foraging trip	2, 21, 30	50 (1–172)	54 (1–258)	112 (1–283)	224 (3–378)	70.0 (3.5–92.0)	842	12.1

For descent, ascent, bottom and total dive durations and bottom depth, medians are provided with minimum and maximum values (in parentheses); all other metrics are otherwise specified.

Discussion

In this study, animal-borne video has revealed an 11-month-old Australian sea lion pup accompanying its mother on a trip to sea, providing direct evidence for mother-to-pup social transmission of foraging behaviour in an otariid species. Animal-borne video and movement data have also highlighted differences in the behaviour of the adult female between a pup-accompanied trip and a solo foraging trip at sea.

During the pup-accompanied trip, the pup was visible in 35 (~75%) of the 47 observed dives from the video data and may have been present but not observed in the remaining 12 dives. This indicates that while at sea, the pair were in close proximity and were diving together frequently, as observed in the video data. One successful predation of a giant cuttlefish (*S. apama*) was observed in the video data from the pup-accompanied trip; the cuttlefish was captured and brought to the surface for processing by the mother. Throughout this prey capture, the pup was swimming alongside the mother and attempting to consume part of the cuttlefish. Therefore, it is possible that the mother was

demonstrating the location, capture and processing of prey to the pup. Although this observation of a joint foraging trip represents data from just one mother–pup pair (Supplementary Fig. S2), it raises fundamental questions around how common social transmission of foraging behaviour is in Australian sea lion populations, the role this behaviour may play in pup development and the period of nursing it may occur in.

The idea of social transmission of foraging behaviour has been postulated before in otariids (Franco-Trecu *et al.* 2016). For Australian sea lions, the notion was first put forward by Goldsworthy *et al.* (2009), to explain their unique 18-month reproductive cycle (Higgins 1993; Shaughnessy *et al.* 2011). Goldsworthy *et al.* (2009) suggest that as Australian sea lions target patchily distributed, cryptic benthic prey (McIntosh *et al.* 2006; Peters *et al.* 2015; Berry *et al.* 2017), pups require extensive experience and knowledge of foraging areas to hunt successfully. This hypothesis therefore proposes that the additional ~6+ months of maternal care, compared with other otariids (Costa 1991; Atkinson 1997), may provide the time and opportunity for pups to accompany mothers at sea to help develop their foraging skills. Other

mammals that exhibit social transmission of foraging behaviour to young also typically share prolonged maternal investment in their offspring, such as orcas (*Orcinus orca*), chimpanzees (*P. troglodytes*) and bottlenose dolphins (*Tursiops* sp.) (Mann and Sargeant 2003; Lonsdorf 2006; Weiss *et al.* 2023). In these species, social transmission of information is thought to be crucial to the development of young (Estes *et al.* 2003; Lonsdorf 2006; Sargeant and Mann 2009). In bottlenose dolphins (*Tursiops* sp.) and orcas (*O. orca*), for example, strong specialisation to foraging behaviours and dietary preferences is even thought to change the selection pressures on genes (Ford and Ellis 2006; Kopps *et al.* 2014), thus driving the structure of populations (Morin *et al.* 2010; Riesch *et al.* 2012).

The exact role and importance of social transmission on the development of foraging behaviour in Australian sea lions is unclear. It is not known how prevalent this behaviour is across their distribution, and how frequently or from what age pups join mothers at sea. Australian sea lion pups likely begin undertaking foraging trips at 4–6 months old and gradually gain nutritional independence from 12 to 15 months old (Fowler *et al.* 2007; Lowther and Goldsworthy 2012, 2016). Although pups begin exploring the habitats utilised by adult females from 10 months old (Lowther and Goldsworthy 2012), data suggest that juveniles at 23 months old do not have the movement or diving capabilities of adult females (Fowler *et al.* 2006, 2007). As the pup in this study was 11 months old, over the final ~7 months of the nursing period the pup may have progressed its foraging abilities, both on trips with its mother and independently. Following weaning (at ~18 months old), the pup would therefore have continued to develop its foraging skills, building on the experience gained during the nursing period.

Future deployments of animal-borne cameras and biologging technology on adult females with known-age pups could improve our knowledge on the timing and importance of social transmission on the development of foraging behaviour in Australian sea lions. The presence of a social component to foraging in Australian sea lions could also have important conservation implications, such as whether mother–pup foraging trips increase or decrease predation risk, for example, to white sharks (*Carcharodon carcharias*) (Shaughnessy *et al.* 2007), as well as the risk of interactions with fisheries (Hamer *et al.* 2013; Goldsworthy *et al.* 2022). Presumably, taking pups to sea is also physiologically costly for mothers, as predation events and foraging gains are likely reduced on joint mother–pup foraging trips. Therefore, investigating the trade-offs of joint foraging trips to mothers, specifically the potential benefits imparted to pups in increasing their foraging/diving abilities, relative to the energetic costs to mothers, could be important for understanding pup survival, broader population dynamics and the conservation and management implications of these. These insights would help to deepen our understanding of the factors that may have shaped the unique 18-month reproductive cycle and

life-history of Australian sea lions. The use of animal-borne cameras is continuing to provide novel and fundamental information on the foraging behaviour of Australian sea lions, highlighting their utility in contributing unique insights into the foraging behaviours of many pinniped species.

Supplementary material

Supplementary material is available online.

References

Angelakis N, Goldsworthy SD, Connell SD, Durante LM (2023) A novel method for identifying fine-scale bottom-use in a benthic-foraging pinniped. *Movement Ecology* 11(1), 34. doi:10.1186/s40462-023-00386-1

Angelakis N, Grammer GL, Connell SD, Bailleul F, Durante LM, Kirkwood R, Holman D, Goldsworthy SD (2024) Using sea lion-borne video to map diverse benthic habitats in southern Australia. *Frontiers in Marine Science* 11, 1425554. doi:10.3389/fmars.2024.1425554

Atkinson S (1997) Reproductive biology of seals. *Reviews of Reproduction* 2, 175–194. doi:10.1530/ror.0.0020175

Berry TE, Osterrieder SK, Murray DC, Coghlan ML, Richardson AJ, Grealy AK, Stat M, Bejder L, Bunce M (2017) DNA metabarcoding for diet analysis and biodiversity: a case study using the endangered Australian sea lion (*Neophoca cinerea*). *Ecology and Evolution* 7(14), 5435–5453. doi:10.1002/ece3.3123

Campbell RA, Gales NJ, Lento GM, Baker CS (2008) Islands in the sea: extreme female natal site fidelity in the Australian sea lion, *Neophoca cinerea*. *Biology Letters* 4(1), 139–142. doi:10.1098/rsbl.2007.0487

Costa DP (1991) Reproductive and foraging energetics of high latitude penguins, albatrosses and pinnipeds: implications for life history patterns. *American Zoologist* 31(1), 111–130. doi:10.1093/icb/31.1.111

Costa DP, Gales NJ (2003) Energetics of a benthic diver: seasonal foraging ecology of the Australian sea lion, *Neophoca cinerea*. *Ecological Monographs* 73(1), 27–43. doi:10.1890/0012-9615(2003)073[0027:EOABDS]2.0.CO;2

Dixon P (2003) VEGAN, a package of R functions for community ecology. *Journal of Vegetation Science* 14(6), 927–930. doi:10.1111/j.1654-1103.2003.tb02228.x

Estes JA, Riedman ML, Staedler MM, Tinker MT, Lyon BE (2003) Individual variation in prey selection by sea otters: patterns, causes and implications. *Journal of Animal Ecology* 72(1), 144–155. doi:10.1046/j.1365-2656.2003.00690.x

Ford JKB, Ellis GM (2006) Selective foraging by fish-eating killer whales *Orcinus orca* in British Columbia. *Marine Ecology Progress Series* 316, 185–199. doi:10.3354/meps316185

Fowler SL, Costa DP, Arnould JPY, Gales NJ, Kuhn CE (2006) Ontogeny of diving behaviour in the Australian sea lion: trials of adolescence in a late bloomer. *Journal of Animal Ecology* 75(2), 358–367. doi:10.1111/j.1365-2656.2006.01055.x

Fowler SL, Costa DP, Arnould JP (2007) Ontogeny of movements and foraging ranges in the Australian sea lion. *Marine Mammal Science* 23(3), 598–614. doi:10.1111/j.1748-7692.2007.00134.x

Franco-Trecu V, Abud C, Feijoo M, Kloetzer G, Casacuberta M, Costa-Urrutia P (2016) Sex beyond species: the first genetically analyzed case of intergeneric fertile hybridization in pinnipeds. *Evolution & Development* 18(2), 127–136. doi:10.1111/ede.12183

Goldsworthy SD, Mckenzie J, Shaughnessy PD, McIntosh RR, Page B, Campbell R (2009) Understanding the impediments to the growth of Australian sea lion populations. Report to the Department of the Environment, Water, Heritage and the Arts. SARDI Publication No. F2008/000847-1, SARDI Research Report Series 356.

Goldsworthy SD, Bailleul F, Nursey-Bray, M, Mackay A, Oxley A, Reinhold S-L, Shaughnessy PD (2019) 'Assessment of the impacts of seal populations on the seafood industry in South Australia.' (South

Australian Research and Development Institute (Aquatic Sciences): Adelaide, SA)

Goldsworthy SD, Shaughnessy PD, Mackay AI, Bailleul F, Holman D, Lowther AD, Page B, Waples K, Raudino, H, Bryars S, Anderson T (2021) Assessment of the status and trends in abundance of a coastal pinniped, the Australian sea lion *Neophoca cinerea*. *Endangered Species Research* **44**, 421–437. doi:[10.3354/esr01118](https://doi.org/10.3354/esr01118)

Goldsworthy SD, Page B, Hamer DJ, Lowther AD, Shaughnessy PD, Hindell MA, Burch P, Costa DP, Fowler SL, Peters K, McIntosh RR, Bailleul F, Mackay AI, Kirkwood R, Holman D, Bryars S (2022) Assessment of Australian sea lion bycatch mortality in a gillnet fishery, and implementation and evaluation of an effective mitigation strategy. *Frontiers in Marine Science* **9**, 799102. doi:[10.3389/fmars.2022.799102](https://doi.org/10.3389/fmars.2022.799102)

Hamer DJ, Goldsworthy SD, Costa DP, Fowler SL, Page B, Sumner MD (2013) The endangered Australian sea lion extensively overlaps with and regularly becomes by-catch in demersal shark gill-nets in South Australian shelf waters. *Biological Conservation* **157**, 386–400. doi:[10.1016/j.biocon.2012.07.010](https://doi.org/10.1016/j.biocon.2012.07.010)

Higgins LV (1993) The nonannual, nonseasonal breeding cycle of the Australian sea lion, *Neophoca cinerea*. *Journal of Mammalogy* **74**(2), 270–274. doi:[10.2307/1382381](https://doi.org/10.2307/1382381)

Jørgensen C, Lydersen C, Brix O, Kovacs KM (2001) Diving development in nursing harbour seal pups. *Journal of Experimental Biology* **204**(22), 3993–4004. doi:[10.1242/jeb.204.22.3993](https://doi.org/10.1242/jeb.204.22.3993)

Kirkwood R, Goldsworthy S (2013) 'Fur seals and sea lions.' (CSIRO Publishing: Melbourne, Australia) doi:[10.1071/9780643109834](https://doi.org/10.1071/9780643109834)

Kopps AM, Ackermann CY, Sherwin WB, Allen SJ, Bejder L, Krützen M (2014) Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins. *Proceedings of the Royal Society B: Biological Sciences* **281**(1782), 20133245. doi:[10.1098/rspb.2013.3245](https://doi.org/10.1098/rspb.2013.3245)

Lonsdorf EV (2006) What is the role of mothers in the acquisition of termite-fishing behaviors in wild chimpanzees (*Pan troglodytes schweinfurthii*)? *Animal Cognition* **9**, 36–46. doi:[10.1007/s10071-005-0002-7](https://doi.org/10.1007/s10071-005-0002-7)

Lowther AD, Goldsworthy SD (2011) Maternal strategies of the Australian sea lion (*Neophoca cinerea*) at Dangerous Reef, South Australia. *Australian Journal of Zoology* **59**(1), 54–62. doi:[10.1071/ZO11025](https://doi.org/10.1071/ZO11025)

Lowther AD, Goldsworthy SD (2012) Head start: Australian sea lion pups gain experience of adult foraging grounds before weaning. *Marine Biology* **159**, 2687–2696. doi:[10.1007/s00227-012-2026-2](https://doi.org/10.1007/s00227-012-2026-2)

Lowther AD, Goldsworthy SD (2016) When were the weaners weaned? Identifying the onset of Australian sea lion nutritional independence. *Journal of Mammalogy* **97**(5), 1304–1311. doi:[10.1093/jmammal/gyw106](https://doi.org/10.1093/jmammal/gyw106)

Lowther AD, Harcourt RG, Hamer DJ, Goldsworthy SD (2011) Creatures of habit: foraging habitat fidelity of adult female Australian sea lions. *Marine Ecology Progress Series* **443**, 249–263. doi:[10.3354/meps09392](https://doi.org/10.3354/meps09392)

Lowther AD, Harcourt RG, Goldsworthy SD, Stow A (2012) Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity. *Animal Behaviour* **83**(3), 691–701. doi:[10.1016/j.anbehav.2011.12.015](https://doi.org/10.1016/j.anbehav.2011.12.015)

Luque SP (2007) Diving behaviour analysis in R. *R News* **7**(3), 8–14.

Mann J, Sargeant B (2003) Like mother, like calf: the ontogeny of foraging traditions in wild Indian Ocean bottlenose dolphins (*Tursiops* sp.). In 'The biology of traditions: models and evidence.' (Eds DM Fragszky, S Perry) pp. 236–266. (Cambridge University Press) doi:[10.1017/CBO9780511584022.010](https://doi.org/10.1017/CBO9780511584022.010)

McIntosh RR, Pitcher BJ (2021) The enigmatic life history of the Australian sea lion. In 'Ethology and behavioral ecology of otariids and the odobenid.' (Eds C Campagna, R Harcourt) pp. 557–585. (Springer Nature) doi:[10.1007/978-3-030-59184-7_26](https://doi.org/10.1007/978-3-030-59184-7_26)

McIntosh RR, Page B, Goldsworthy SD (2006) Dietary analysis of regurgitates and stomach samples from free-living Australian sea lions. *Wildlife Research* **33**(8), 661–669. doi:[10.1071/WR06025](https://doi.org/10.1071/WR06025)

Miller EH, Kochnev AA (2021) Ethology and behavioral ecology of the walrus (*Odobenus rosmarus*), with emphasis on communication and social behavior. In 'Ethology and behavioral ecology of otariids and the odobenid.' (Eds C Campagna, R Harcourt) pp. 437–488. (Springer Nature) doi:[10.1007/978-3-030-59184-7_22](https://doi.org/10.1007/978-3-030-59184-7_22)

Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P, Durban J, Parsons K, Pitman R, Li L, Bouffard P, Nielsen SCA, Rasmussen M, Willerslev E, Gilbert MTP, Harkins T (2010) Complete mitochondrial genome phylogeographic analysis of killer whales (*Orcinus orca*) indicates multiple species. *Genome Research* **20**(7), 908–916. doi:[10.1101/gr.102954.109](https://doi.org/10.1101/gr.102954.109)

Peters KJ, Ophelkeller K, Bott NJ, Deagle BE, Jarman SN, Goldsworthy SD (2015) Fine-scale diet of the Australian sea lion (*Neophoca cinerea*) using DNA-based analysis of faeces. *Marine Ecology* **36**(3), 347–367. doi:[10.1111/maec.12145](https://doi.org/10.1111/maec.12145)

Riesch R, Barrett-Lennard LG, Ellis GM, Ford JK, Deecke VB (2012) Cultural traditions and the evolution of reproductive isolation: ecological speciation in killer whales? *Biological Journal of the Linnean Society* **106**(1), 1–17. doi:[10.1111/j.1095-8312.2012.01872.x](https://doi.org/10.1111/j.1095-8312.2012.01872.x)

Sargeant BL, Mann J (2009) Developmental evidence for foraging traditions in wild bottlenose dolphins. *Animal Behaviour* **78**(3), 715–721. doi:[10.1016/j.anbehav.2009.05.037](https://doi.org/10.1016/j.anbehav.2009.05.037)

Sato K, Mitani Y, Naito Y, Kusagaya H (2003) Synchronous shallow dives by Weddell seal mother-pup pairs during lactation. *Marine Mammal Science* **19**(2), 384–395. doi:[10.1111/j.1748-7692.2003.tb01116.x](https://doi.org/10.1111/j.1748-7692.2003.tb01116.x)

Shaughnessy PD, Dennis TE, Berris M (2007) Predation on Australian sea lions *Neophoca cinerea* by white sharks *Carcharodon carcharias* in South Australia. *Australian Mammalogy* **29**(1), 69–75. doi:[10.1071/AM07008](https://doi.org/10.1071/AM07008)

Shaughnessy PD, Goldsworthy SD, Hamer DJ, Page B, McIntosh RR (2011) Australian sea lions *Neophoca cinerea* at colonies in South Australia: distribution and abundance, 2004 to 2008. *Endangered Species Research* **13**(2), 87–98. doi:[10.3354/esr00317](https://doi.org/10.3354/esr00317)

Weiss MN, Ellis S, Franks DW, Nielsen MLK, Cant MA, Johnstone RA, Ellifrit DK, Balcomb KC, Croft DP (2023) Costly lifetime maternal investment in killer whales. *Current Biology* **33**(4), 744–748.e3. doi:[10.1016/j.cub.2022.12.057](https://doi.org/10.1016/j.cub.2022.12.057)

Whitehead H (2018) Culture and social learning. In 'Encyclopedia of marine mammal.' (Eds B Würsig, JGM Thewissen) pp. 232–234. (Academic Press) doi:[10.1016/B978-0-12-804327-1.00099-6](https://doi.org/10.1016/B978-0-12-804327-1.00099-6)

Data availability. The datasets presented in this study are available in the online repository at: <https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalogsearch#/metadata/84cb1709-a6694f2c-b97b-5eceb7929349>.

Conflicts of interest. The authors declare that they have no conflicts of interest.

Declaration of funding. This research was funded by the National Environmental Science Program (NESP), Marine and Coastal Hub (Project 2.6, Mapping critical Australian sea lion habitat to assess ecological value and risks to population recovery). Additional operating costs were funded by the Ecological Society of Australia, via a Holsworth Wildlife Research Endowment (006010901), awarded to NA.

Acknowledgements. We acknowledge Mel Stonnill, Ashleigh Wycherley and the Department for Environment and Water (DEW) staff at Seal Bay Conservation Park for their assistance in the field. We also thank Carey Kuhn (National Oceanic and Atmospheric Administration NOAA) and Niko Liebsch (Customized Animal Tracking Solutions CATS) for their support with camera equipment.

Author contributions. NA, RK and SG undertook fieldwork and collected the data. NA wrote the manuscript and conducted all data and statistical analyses. RK, SC and SG all reviewed and assisted with writing/editing of draft versions. All authors made substantial contributions to the design of the study, revised the manuscript content and approved the submitted version.

Author affiliations

^ASouthern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.

^BSouth Australian Research and Development Institute (Aquatic Sciences), West Beach, SA, Australia.